Root resistance to cavitation is accurately measured using a centrifuge technique.
نویسندگان
چکیده
Plants transport water under negative pressure and this makes their xylem vulnerable to cavitation. Among plant organs, root xylem is often highly vulnerable to cavitation due to water stress. The use of centrifuge methods to study organs, such as roots, that have long vessels are hypothesized to produce erroneous estimates of cavitation resistance due to the presence of open vessels through measured samples. The assumption that roots have long vessels may be premature since data for root vessel length are sparse; moreover, recent studies have not supported the existence of a long-vessel artifact for stems when a standard centrifuge technique was used. We examined resistance to cavitation estimated using a standard centrifuge technique and compared these values with native embolism measurements for roots of seven woody species grown in a common garden. For one species we also measured vulnerability using single-vessel air injection. We found excellent agreement between root native embolism and the levels of embolism measured using a centrifuge technique, and with air-seeding estimates from single-vessel injection. Estimates of cavitation resistance measured from centrifuge curves were biologically meaningful and were correlated with field minimum water potentials, vessel diameter (VD), maximum xylem-specific conductivity (Ksmax) and vessel length. Roots did not have unusually long vessels compared with stems; moreover, root vessel length was not correlated to VD or to the vessel length of stems. These results suggest that root cavitation resistance can be accurately and efficiently measured using a standard centrifuge method and that roots are highly vulnerable to cavitation. The role of root cavitation resistance in determining drought tolerance of woody species deserves further study, particularly in the context of climate change.
منابع مشابه
Xylem vulnerability to cavitation can be accurately characterised in species with long vessels using a centrifuge method.
Vulnerability to cavitation curves describe the decrease in xylem hydraulic conductivity as xylem pressure declines. Several techniques for constructing vulnerability curves use centrifugal force to induce negative xylem pressure in stem or root segments. Centrifuge vulnerability curves constructed for long-vesselled species have been hypothesised to overestimate xylem vulnerability to cavitati...
متن کاملNo evidence for an open vessel effect in centrifuge-based vulnerability curves of a long-vesselled liana (Vitis vinifera).
Vulnerability to cavitation curves are used to estimate xylem cavitation resistance and can be constructed using multiple techniques. It was recently suggested that a technique that relies on centrifugal force to generate negative xylem pressures may be susceptible to an open vessel artifact in long-vesselled species. Here, we used custom centrifuge rotors to measure different sample lengths of...
متن کاملCentrifuge technique consistently overestimates vulnerability to water stress-induced cavitation in grapevines as confirmed with high-resolution computed tomography.
Vulnerability to cavitation is a key variable defining the limits to drought resistance in woody plants (Kursar et al., 2009). This trait is typically assessed by a vulnerability curve, which can be generated by a range of methods, including dehydration (Sperry et al., 1988), air injection (Cochard et al., 1992), and centrifugation (Alder et al., 1997). Results from two recent papers suggest th...
متن کاملTesting the ‘microbubble effect’ using the Cavitron technique to measure xylem water extraction curves
Plant resistance to xylem cavitation is a major drought adaptation trait and is essential to characterizing vulnerability to climate change. Cavitation resistance can be determined with vulnerability curves. In the past decade, new techniques have increased the ease and speed at which vulnerability curves are produced. However, these new techniques are also subject to new artefacts, especially ...
متن کاملImproving xylem hydraulic conductivity measurements by correcting the error caused by passive water uptake.
Xylem hydraulic conductivity (K) is typically defined as K = F/(P/L), where F is the flow rate through a xylem segment associated with an applied pressure gradient (P/L) along the segment. This definition assumes a linear flow-pressure relationship with a flow intercept (F(0)) of zero. While linearity is typically the case, there is often a non-zero F(0) that persists in the absence of leaks or...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Tree physiology
دوره 35 2 شماره
صفحات -
تاریخ انتشار 2015